登录 注册 

欢迎光临维宠宠物导航网!

维宠宠物导航网

153-2012-0258

Industry
产业+

资讯 您的位置:首页 > 产业+ > 资讯

欧洲动野兽医协会关于新冠病毒和宠物、野生动物、动物园的问答(中英对照)

2020-04-01 1461 返回列表

(本文最后更新于2020年3月17日)


Preliminary note: the scientific content of this factsheet was collected from reliable sources such as OIE, European National references laboratories, WHO, and pre-Covid19 scientific literature about coronavirus.

说明:本文章内容收集于可靠来源,如OIE、欧洲国家参考实验室、世卫组织以及冠状病毒科学文献。


A massive amount of new science is available daily [1087 and counting at this date] but be aware to check the source [e.g. pre-print server vs. peer-reviewed].

每天都有大量的科学发现[1087篇文献,至今仍在统计中],但是要注意检查来源[例如预打印服务器vs.同行评审]。


Here you can find a good resource for daily publications : Lit Cov (see online references)

从这个来源可以找到一个很好的日常出版物资料:Lit Cov (见网上参考资料)


Moreover, the real information we need about the susceptibility and possible involvement of various animals is not yet available and won’t be for months or years.

此外,关于各种动物易感性和可能涉及的相关信息还没有得到,而且也不会在未来短时间内得到。



 内容提要 

1、新型冠状病毒简介

2、冠状病毒在野生/动物园常见吗?

3、冠状病毒会引发什么疾病?

4、冠状病毒能从动物传染给人类吗?

5、这种SARS-CoV-2主要与哪些动物有关?

6、为什么Covid-19能够跨越物种屏障?在动物园里会发生传播吗?

7、如何看待中国的阳性犬?对其他物种的敏感性如何?

8、是否可能由游客/饲养员传染给动物的风险?

9、关于从动物园动物传染给游客/饲养员的风险的保证声明?

10、病毒在环境中的稳定性如何?


新冠状病毒简介

Are coronavirus usual in wild species / Zoo animals ?



·

The CoVid-19 is a viral infectious disease (last “d”=disease) transmitted between humans, first described in Wuhan China on the  31st  od  December  2019 .  Up  to  now ,  the  virus  spread  globally  with  more  than 180.000 human cases in over 150 countries at the date of writing this text. The virus name is SARS-COV-2, and belongs to Coronavirus family. This name was given because of real genetic proximity of this virus with the SARS virus of 2002-2003 outbreak. On the 11th of March 2020, the WHO officially declared it as pandemic.


CoVid-19是一种人际传播的病毒性传染病(最后一个“d”=疾病),于2019年12月31日在中国武汉首次发现。到目前为止,该病毒在全球范围内传播,截至撰写本文时,已有超过150个国家的18万多例人类病例。病毒名称为SARS-COV-2,属于冠状病毒科。之所以取这个名字,是因为这种病毒与2002-2003年爆发的非典病毒在基因上非常接近。在2020年3月11日,世界卫生组织正式宣布它为世界性流行病。



冠状病毒在野生动物/动物园常见吗?

Are coronavirus usual in wild species / Zoo animals ?



· Yes, coronaviruses are very common in Mammals and Birds. They are not always associated to disease and there are a lot of non-symptomatic carriers often occur in many domestic and wild species.

· 是的,冠状病毒在哺乳动物和鸟类中很常见。它们并不总是导致发病,在许多家养和野生动物中经常出现许多无症状的携带者。


This RNA virus family is comprised between 4 main groups: (2)

该RNA病毒家族由4个主要部分组成:(2)


· Alphacoronavirus : mainly found in bats , but this group also contains The Feline Coronavirus FeCov with its two forms (FeCV and FIP) (16) The canine coronavirus ,Human viruses like HCov 229-E, sometimes a component of the common cold

· α型冠状病毒主要在蝙蝠中发现,但这个群体也包含猫冠状病毒的2个亚型(Fcov和FIP)(16);犬冠状病毒;人类病毒如HCov 229-E,造成普通感冒。


· Betacoronavirus : most represented in mammals, from carnivores to hoofstock (8) (14), from hedgehogs to bats. It also contains the 3 more recent emerging coronaviral diseases:

· β型冠状病毒:在哺乳动物中最常见,从食肉动物到蹄类动物(8)(14),从刺猬到蝙蝠。它还包括最近出现的3种冠状病毒疾病:

· MERS CoV

· SARS CoV

· HCoV-OC43


· Additionally: HCoV-OC43, one of the more prevalent infectious agents of the common cold in humans

补充: HCoV-OC43, 传染性更广,造成人类的普通感冒。


· Gammacoronavirus : viruses from cetaceans (beluga, dolphins), and a dozen of purely avian viruses

· γ型冠状病毒:感染鲸目动物(白鲸、海豚)以及十多种禽类的病毒


· Deltacoronavirus : (35) mostly avian species specific coronaviruses , and some porcine one., recently recovered from leopard cats

· δ型病毒:(35)主要是鸟类特有的冠状病毒和一些猪病毒。最近刚从豹猫身上发现该病毒。


 Chiropterans are well known to be host of many viruses, including various coronavirus at the same time (30). These include also some very specific coronaviruses that are specific to one species or only one genus of bats.

· 众所周知蝙蝠是许多病毒同时(30)包括各种冠状病毒的宿主,其中也包括一些非常特殊的冠状病毒,它们只感染特定种属的蝙蝠。


· After their first year of life, more than 80% of domestic species including dogs, cats, cattle, and pigs, are seropositive for at least one coronavirus, without expressing clinical signs.

· 家养的动物如犬、猫、牛、猪等,80%的动物在出生一年后对至少一种冠状病毒血清学反应阳性,而且临床上并没有表现出症状。



冠状病毒会引发什么疾病?

What kind of disease does coronavirus provoke?




Coronaviruses are able to infect several categories of somatic cells, but they often invade epithelial cells, especially those of the digestive mucosa and/or respiratory tract. Because of this tropism, the resulting diseases mainly fall into two groups:

冠状病毒可以感染多种类型的细胞,其中它们经常侵袭上皮细胞,特别是消化道粘膜和呼吸道。由于这种趋向性,疾病主要分为两类:


  • Diarrhea and intestinal disorders (example seen in bovine calves, sometimes in association with rotavirus) 

  • 腹泻和肠道功能失调(例如在牛身上发现的轮状病毒)

  • Respiratory syndromes, either from upper tract (like common cold) or deeper like bronchopneumonia.

  • 呼吸综合征,上呼吸道疾病(如普通感冒)或支气管肺炎。



冠状病毒能从动物传染给人类吗?

Could the coronaviruses be transmitted from Animal to Human?




Generally, coronaviruses are rather species-adapted, and transmission from one species to another is rare. Only a few described species of coronaviruses have shown a broad host species range:

总体来说冠状病毒有较强的种属特异性,只有很少部分冠状病毒出现跨物种传播,如:

  • · SARS-CoV (Human, civet cats, racoon dogs, horseshoe bat, swine 

  • · SARS-CoV (人,麝猫,狸,菊头蝠,猪)

  • MERS-CoV (Human, bats, hedgehogs, camels) 

  • MERS-CoV(人、蝙蝠、刺猬、骆驼)

  •  Bov-CoV (Cattle, wild ruminants, camelids, dogs, occasionally humans) (1)

  • Bov-CoV(牛,野生反刍动物,骆驼,犬,偶尔也有人类)(1)

Transmission does not necessarily mean disease. Most of the time, when transmission to another species occurs, there’s only subclinical disease in the new hosts (like Covid-19).

传播不一定意味着发病。大多数情况下,当病毒传播到其他物种时,新宿主中只有亚临床症状(如Covid-19)。


 Viruses in general lack the regulation mechanisms avoiding / fixing copy errors of the genome in animal cells. Hence, mutation rates are of larger magnitude which explains why they can adapt to new host with (relatively little) time. However, it has recently been shown that some coronaviruses are capable of some replication regulation under certain environmental circumstances, which make them more complex adaptors.

病毒一般缺乏复制调节机制以避免/修复基因的复制错误。因此,突变率更大,这导致了病毒可以很快适应新的宿主(相对较快)。然而,最近的研究表明,一些冠状病毒在某些环境条件下具有一定的复制调节能力,这使它们成为更复杂的适应体。


Coronavirus mutation rates are is not greater than in most other viral families. However,RNA viruses are more susceptible to mutation than DNA viruses.

 冠状病毒变异率不大于其他病毒 。但,RNA病毒比DNA病毒更容易发生突变。


Coronavirus RNA is longer than that of other RNA viruses, increasing the likelihood of copy incidents compared to viruses with shorter nucleic acids.

冠状病毒RNA比其他RNA病毒长,与核酸短的病毒相比,复制错误更容易发生。


 Recombination ability is also an important feature of coronaviruses, well studied under the SARS outbreak in 2002. Coupled with mutation, this allows adaptation to occur (e.g., receptor binding ability, temperature adaptation enzymes) in a shorter time period, than for other viruses.

重组能力也是冠状病毒的一个重要特征,这在2002年SARS爆发期间得到了很好的研究。加上突变,这使得适应性(例如,受体结合能力,温度适应酶)比其他病毒在更短的时间内发生改变。


 

这种SARS-CoV-2主要与哪些物种有关?

To which animal species is this SARS-CoV-2 associated?




SARS-CoV2 is showing 96.3% genomic identity with Bat-CoV-RaTG13 that was previously detected in the intermediate horseshoe bat (Rhinolophus affinis) from southwest China's Yunnan Province

· SARS-CoV2与中国西南部云南省的菊头蝠身上携带的Bat-CoV-RaTG13的基因同源性为96.3%。


However, there is a difference within the Receptor Binding Domain RBD of the spike protein between the two viruses : the SARS-CoV-2 RBD is adapted to receptors the ACE2 which allows it to enter human cells, while Bat- CoV-RaTG13 can’t do it.

然而,这两种病毒在spike蛋白的受体结合域-RBD中存在差异:SARS-CoV-2 RBD与ACE2受体相适应,ACE2允许其进入人体细胞,而Bat- CoV-RaTG13则不能。


Pangolin coronavirus was discovered in 2019. Regarding the short RBD region, the Pangolin-CoV is more similar to SARS-CoV-2 region than the Bat-CoV-RaTG13. The Pangolin-CoV shares all five key amino acids in invading human cells with SARS-CoV-2 whereas Bat-CoV-RaTG13 genome only shares one out of five. However, it is important to note that the pangolin or any other species has not been determined as intermediary or amplification host in this SAR-CoV-2 outbreak.

穿山甲冠状病毒于2019年被发现。在短RBD区域,与Bat-CoV-RaTG13相比,穿山甲冠状病毒更接近于SARS-CoV-2。穿山甲冠状病毒与SARS-CoV-2共同拥有入侵人体细胞的所有五种关键氨基酸,而Bat-CoV-RaTG13基因组只有五分之一是相同的。然而,值得注意的是,在这次SARS-CoV-2暴发中,穿山甲或任何其他物种尚未被确定为中间宿主或扩增宿主。


As horseshoe bats were hibernating at the time when Covid-19 appeared in China, there is general consensus that the SARS-CoV-2 is of ancestral Bat-CoV-RaTG13 origin, but that an intermediate / amplification host with reassortments in the RBD region was necessary to invade human cells. Obviously, all this is speculative at this stage.

当Covid-19在中国出现时,菊头蝠正在冬眠,普遍认为SARS-CoV-2起源于Bat-CoV-RaTG13的祖先,但需要一个有重组RBD区域的中间/扩增宿主来入侵人类细胞。显然,在这个阶段,所有这些说法都是推测性的。



为什么Covid-19能够突破物种屏障?在动物园里会发生传播吗?

To which animal species is this SARS-CoV-2 associated?




For a virus to make this kind of leap, a number of factors have to line up: Infected animal, infectious secretions, very close contact possibly repetition in time.

对于一种病毒来说,要实现这样的跨物种飞跃,有许多因素需要考虑:受感染的动物、有传染性的分泌物、非常密切的接触(可能在时间上重复)。


Wildlife markets are therefore a unique occasion for interspecific transmission:

因此,野生动物市场是种间传播的一个独特场合

  • Poor hygiene – slaughter 不卫生-屠宰

  • Stressed animals likely to shed a lot of virus应激动物容易传播大量病毒

  • Continuous close and crowded contact between multiple species unlikely in the wild+多物种之间持续的紧密和拥挤的接触在野外是不可能的

  • Close proximity to livestock, poultry and domestic animals接近家畜、家禽和宠物

  • Wildlife used as small household pets or slaughtered on-site and subsequently eaten, sometimes raw, promoting intimate contact between virus and host ‘s intestinal tract.野生动物被作为家庭宠物或在现场屠宰后食用,特别是生吃,造成病毒与宿主肠道的亲密接

  • Conditions within zoo settings are very different:动物园的环境是非常不同的

  •  Good hygiene practice卫生的环境

  • Welfare of animals minimizing stress动物无应激

  •  Monitoring and active surveillance of animal health, veterinary observation, screenings.兽医积极观察监测动物健康

  • Typically, captive bred animals通常是圈养

  • No human consumption of wildlife 没人食用野生动物

  • Time is also very important factor: several genetic retrospective and phylogenetic studies agree that SARS and MERS emergence are linked to several decades of continuous proximity, allowing several mutation and recombination event to occur consecutively.时间也是很重要的因素:若干遗传回顾性和系统发育研究文章显示 SARS and MERS在最近几十年连续发生了几个突变和重组事件



如何看待中国的阳性犬呢?对其他物种的敏感性如何?

To which animal species is this SARS-CoV-2 associated?




Positive dog reported in Hong Kong in late February: repeated RT-PCR low-level SARS-CoV-2 viral RNA was detected in oro-nasal and fecal swabs. So far, the most credible hypothesis that this is actually a passive transfer of virus from its infected owner, without any infection of viral shedding of the dog. The dog showed no symptoms and to date has not sero-converted [15 March 2020] (http://www.promedmail.org/post/7081842)


二月底在香港发现一只犬呈阳性:RT-PCR在口腔、鼻腔和粪便拭子中检测到低水平的SARS-CoV-2病毒RNA,到目前为止,最可信的假设是,这实际上是病毒从其受感染的主人那里被动转移过来的,不会传播病毒。犬没有显示临床症状,也没有血清学反应。 [15 March 2020] (http://www.promedmail.org/post/7081842)


So far, the ability for SARS-CoV-2 to infect other species has mainly been assessed by In vitro by infection trial on various mammalian cells, or by computer simulated prediction according to RBD / ACE2 receptors binding abilities (2). Combination of these two approaches in 3 different studies provide the report in Table A below.

到目前为止,SARS-CoV-2感染其他物种的能力主要通过各种哺乳动物细胞的体外感染试验或根据RBD / ACE2受体结合能力的计算机模拟预测进行评估(2)。在3个不同的研究中,这两种方法的结合提供了如下表A所示的报告。


Additionally, as labs rush to test SARS-CoV-2 in animal models the first results are emerging: teams in China have reported initial findings from infecting Rhesus macaques (https://www.researchsquare.com/article/rs-15756/v1) and transgenic mice (https://www.biorxiv.org/content/10.1101/2020.02.07.939389v3)  that have the human ACE2 gene. Labs working on ferrets say they should also have initial results soon: a team led by virologist S.

S. Vasan at the Australian Animal Health Laboratory in Geelong has found that the animals are susceptible to SARS- CoV-2 (https://www.nature.com/articles/d41586-020-00698-x#ref-CR1)

此外,实验室测试SARS-CoV-2在动物模型中的第一个结果出来了:中国的团队已公布初步调查结果,恒河猴(https://www.researchsquare.com/article/rs-15756/v1)和转基因小鼠(https://www.biorxiv.org/content/10.1101/2020.02.07.939389v3)有人类ACE2基因。研究雪貂的实验室表示,他们很快也会得到初步结果:由澳大利亚动物健康实验室(位于吉隆)的病毒学家S. S. Vasan领导的一个小组发现,雪貂对 SARS- CoV-2很敏感 (https://www.nature.com/articles/d41586-020-00698-x#ref-CR1)


Table A : Extant knowledge about species sensitivity to SARS_CoV-2 from (16), (30) and (37)

表A:现有的关于SARS_CoV-2的物种敏感性的知识(16)、(30)和(37)


Species物种

Infected Cell

感染细胞

Viral Particle enter

病毒进入

Computer prediction of receptor binding

受体结合的计算机预测

菊头蝠

可能

Daubenton蝠

?

?

Civet cat

?

可能

非人的灵长类

?

可能

猩猩

?

?

可能

可能

小鼠

不可能

大鼠

?

?

不可能

仓鼠

?

?

?

?

?

?

?

?

可能

雪貂

?

?

可能


The Friedrich-Loeffler-Institut ( FLI ) (Germany) is currently testing experimental sensitivity of poultry and swine for SARS-CoV-2 but the results of this study won’t be available before end of April

 Friedrich-Loeffler-Institut(FLI)(德国)目前正在测试家禽和猪对SARS-CoV-2的实验敏感性,但这项研究的结果要到4月底才能公布.



是否存在由游客/饲养员传染给动物的风险?

Is there any risk of transmission from visitors / keepers to animals?




According to the current knowledge, SARS-CoV-2 is showing abilities to enter cells of several animal species such as bats. Therefore, close contact between chiropterans and infected / suspect human with CoViD19 should be forbidden. Keepers taking care of bats colony should be especially assessed.

根据目前的知识,SARS-CoV-2表现出能感染几种动物细胞的能力,如蝙蝠。因此,应禁止蝙蝠与CoViD19感染/疑似人员之间的密切接触。应该特别评估照顾蝙蝠种群的饲养员。


Individuals handling or caring for animals should implement the following basic hygiene measures, applying to both visitors or keepers:

操作人员或照顾动物的员工应采取下列基本卫生措施,也适用于游客或饲养员:


Prevent contact with animals when ill

生病时不要与动物接触


Wash hands thoroughly before and after handling animals, their food, or supplies

在接触动物、食物或供应品前后都要彻底洗手


 Avoid any close contact like “kissing” or petting (especially without gloves)

避免任何亲密接触,如“亲吻”或抚摸(特别是不戴手套时)


Regarding great apes, there are already two official documents:关于类人猿,已经有两个官方文件:

 One from EAZA great Ape TAG Vet advisors EAZA 类人猿兽医指导

· One from AZA / ZAHP Fusion Center : https://zahp.aza.org/wp-content/uploads/2020/03/COVID-19-and- Great-Apes_3.12.2020.pdfAZA / ZAHP中心


The EAZA statement on SARS-CoV-2 can be found here: 

EAZA关于SARS-CoV-2 的声明请见链接

https://www.eaza.net/assets/Uploads/Mailing-uploads/2020/2020-03-Corona-Virus-statement.pdf

 

关于动物园动物传染给游客/饲养员疾病风险的声明?

Reassuring Statements about risk of transmission from zoo animals to visitors / keepers?




Zoo animals are under veterinary care, including ongoing monitoring of infectious diseases. For some particular species, screening for some coronaviruses is already part of entry requirements (e.g. FIP in some Felidae) or readily looked for when any clinical signs are noted (e.g. diarrhea in young bovids)

动物园里的动物接受兽医护理,包括持续监测传染病。对于某些特定的物种,筛选一些冠状病毒已经是进入动物园的一部分条件(如某些猫科动物的FIP),出现任何临床症状时(如小牛科动物的腹泻)也很容易发现。


The species of chiropterans that are mostly involved with coronavirus (like Asiatic horseshoe bats or other small insectivorous species) are not kept within European zoo collection, mostly focusing on flying foxes that are not known hosts of the high-profile zoonotic coronaviruses.

可能感染冠状病毒的蝙蝠品种(如亚洲菊头蝠或其他小型食虫品种)并没有被欧洲动物园饲养,动物园主要饲养飞狐,它们并不是常见的冠状病毒的宿主。


 The environmental, sanitary and welfare conditions of zoo settings cannot in any way be compared to conditions in wildlife markets. Zoos employ exemplary hygiene and sanitation practices, excellent holding conditions adapted to the species’ needs and daily monitoring of all animals in their care.

动物园的环境、卫生和福利条件比野生动物市场的条件好很多。动物园采用了堪称典范的卫生和环境管理措施,良好的饲养条件满足了物种的需要,并可以对所有动物进行日常监测。



病毒在环境中的稳定性如何?

What about stability of virus in environment?




Infective media: SARS-CoV-2 could be excreted through oral cavity (saliva), respiratory tract (breath / aerosol) and also intestinal tract (feces).

感染媒介:SARS-CoV-2可通过口腔(唾液)、呼吸道(呼吸/气溶胶)和肠道(粪便)排出。


 SARS-CoV-1 and SARS-CoV-2 seems to share the same propriety of stability on surface and in aerosols (27)

· SARS-CoV-1和SARS-CoV-2似乎在物体表面和气溶胶中具有相同的稳定性(27)


remaining viable in aerosols for up to 3 hours

可在气溶胶中存活长达3小时


remaining detectable on metal or plastic surface for up to 3 days, but their titers reduced a lot (e.g. from 103.7  to 100.6 Tissue Culture Infective Dose / mL over 72h)

在金属或塑料表面长达3天,但他们的滴度下降了很多 (例如. 72 h后从103.7 降到 100.6   体外组织感染量/ 毫升 )


 The most efficient disinfectant remains alcoholic compounds, but with appropriate contact time: propanol (100% or 70%) or ethanol (70%) for a minimum of 30 sec. For other compounds such as quaternary ammonium or phenolic compounds, efficient contact time regarding coronavirus is usually 10 minutes. Other disinfectants that could be used include wine vinegar (1 minute), sodium chlorite (1-2 minutes), hydrogen peroxide (usually 2 minutes). (19)

最有效的消毒剂仍然是含酒精的混合物,但要有适当的接触时间:丙醇(100%或70%)或乙醇(70%),至少接触30秒。对于其他化合物,如季铵盐或酚类化合物,冠状病毒的有效接触时间通常为10分钟。其他可以使用的消毒剂包括酒醋(1分钟),亚氯酸钠(1-2分钟),双氧水(通常2分钟)。(19)


Online live references

在线实时参考

1. WHO:

 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

2. John Hopkins Univ:https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

3. LitCovid database: 

  https://www.ncbi.nlm.nih.gov/research/coronavirus/

4. BioOne Wildlife & Coronativus Database :    https://complete.bioone.org/covid-19


Literature 

文献

1. Alekseev, K. P., A. N. Vlasova, K. Jung, M. Hasoksuz, X. Zhang, R. Halpin, S. Wang, E. Ghedin, D. Spiro et L. J. Saif. 2008. "Bovine- like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences." Journal of Virology 82 (24):12422-31.

2. Anthony, S. J., Johnson, C. K., Greig, D. J., Kramer, S., Che, X., Wells, H., et al. 2017. Global patterns in coronavirus diversity. Virus Evolution, 3(1), vex012.

3. Bao, Linlin, Wei Deng, Baoying Huang, Hong Gao, Jiangning Liu, et al. 2020. "The Pathogenicity of SARS-CoV-2 in hACE2 Transgenic Mice." BioRxiv:2020.02.07.939389.

4. Bernard Stoecklin, S., P. Rolland, Y. Silue, A. Mailles, C. Campese, A. Simondon, M. Mechain, L. Meurice, M. Nguyen, C. Bassi, E. Yamani, S. Behillil, S. Ismael, D. Nguyen, D. Malvy, F. X. Lescure, S. Georges, C. Lazarus, A. Tabai, M. Stempfelet, V. Enouf, B. Coignard, D. Levy-Bruhl et Team Investigation. 2020. "First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020." Euro Surveill 25 (6).

5. Casanova, Lisa M, Soyoung Jeon, William A Rutala, David J Weber, and Mark D Sobsey. 2010. "Effects of air temperature and relative humidity on coronavirus survival on surfaces." Applied and Environmental Microbiology 76 (9):2712-2717.

6. Corman, V. M., R. Kallies, H. Philipps, G. Gopner, M. A. Muller, I. Eckerle, S. Brunink, C. Drosten et J. F. Drexler. 2014. "Characterization of a novel betacoronavirus related to middle East respiratory syndrome coronavirus in European hedgehogs." J Virol 88 (1):717-24.

7. Danchin, Antoine, Tuen Wai Patrick Ng et Gabriel Turinici. 2020. "A new transmission route for the propagation of the SARS-CoV- 2 coronavirus." Preprint

8. Darnell, Miriam ER, Kanta Subbarao, Stephen M Feinstone, and Deborah R Taylor. 2004. "Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS- CoV." Journal of virological methods 121 (1):85-91.

9. Davis, E., B. R. Rush, J. Cox, B. DeBey et S. Kapil. 2000. "Neonatal enterocolitis associated with coronavirus infection in a foal: A case report." Journal of Veterinary Diagnostic Investigation 12 (2):153-156.

10. Easterbrook, J. D., J. B. Kaplan, G. E. Glass, J. Watson et S. L. Klein. 2008. "A survey of rodent- borne pathogens carried by wild- caught Norway rats: a potential threat to laboratory rodent colonies." Lab Anim 42 (1):92-8.

11. Erles, K., C. Toomey, H. W. Brooks et J. Brownlie. 2003. "Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease." Virology 310 (2):216-23.

12. Ferguson, N. M. et M. D. Van Kerkhove. 2014. "Identification of MERS-CoV in dromedary camels." Lancet Infect Dis 14 (2):93-4.

13. Fung, To S. et Ding X. Liu. 2014. "Coronavirus infection, ER stress, apoptosis and innate immunity." Frontiers in Microbiology 5 (296).

14. Guan, W. J., Z. Y. Ni, Y. Hu, W. H. Liang, C. Q. Ou, J. X. He, L. Liu, H. Shan, et al. 2020. "Clinical Characteristics of Coronavirus Disease 2019 in China." New England Journal of Medicine.

15. Hasoksuz, M., K. Alekseev, A. Vlasova, X. Zhang, D. Spiro, R. Halpin, S. Wang, E. Ghedin et L. J. Saif. 2007. "Biologic, antigenic, and full-length genomic characterization of a bovine- like coronavirus isolated from a giraffe." Journal of Virology 81 (10):4981-90


16. Hoffmann, Markus, Hannah Kleine-Weber, Nadine Krüger, Marcel A Mueller, Christian Drosten et Stefan Pöhlmann. 2020. "The novel coronavirus 2019 (2019-nCoV) uses the SARS- coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells." BioRxiv.

17. Horzinek, Marian C et Hans Lutz. 2009. "An update on feline infectious peritonitis." Veterinary Sciences Tomorrow 2001.

18. Hu, D., C. Zhu, L. Ai, T. He, Y. Wang, F. Ye, L. Yang, C. Ding, X. Zhu, R. Lv, J. Zhu, B. Hassan, Y. Feng, W. Tan et C. Wang. 2018. "Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats." Emerg Microbes Infect 7 (1):154.

19. Jin, L., C. K. Cebra, R. J. Baker, D. E. Mattson, S. A. Cohen, D. E. Alvarado et G. F. Rohrmann. 2007. "Analysis of the genome sequence of an alpaca coronavirus." Virology 365 (1):198-203.

20. Kampf, G., D. Todt, S. Pfaender et E. Steinmann. 2020. "Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents." Journal of Hospital Infection.

21. Lau, S. K., P. C. Woo, C. C. Yip, R. Y. Fan, Y. Huang, M. Wang, R. Guo, C. S. Lam, A. K. Tsang, K. K. Lai, K. H. Chan, X. Y. Che, B. J. Zheng et K. Y. Yuen. 2012. "Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits." J Virol 86 (10):5481-96.

22. Laude, H. 1981. "Thermal inactivation studies of a coronavirus, transmissible gastroenteritis virus." Journal of General Virology 56 (2):235-240.

23. Leclercq, India, Christophe Batejat, Ana M Burguière, and Jean-Claude Manuguerra. 2014. "Heat inactivation of the M iddle E ast respiratory syndrome coronavirus." Influenza and other respiratory viruses 8 (5):585-586.

24. Li, J. Y., Z. You, Q. Wang, Z. J. Zhou, Y. Qiu, R. Luo et X. Y. Ge. 2020. "The epidemic of 2019- novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future." Microbes Infect.

25. Ong, Sean Wei Xiang, Yian Kim Tan, Po Ying Chia, Tau Hong Lee, Oon Tek Ng, Michelle Su Yen Wong et Kalisvar Marimuthu. 2020. "Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient." JAMA.

26. Paraskevis, Dimitrios, Evangelia Georgia Kostaki, Gkikas Magiorkinis, Georgios Panayiotakopoulos, G Sourvinos et S Tsiodras. 2020. "Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event." Infection, Genetics and Evolution 79:104212.

27. Rabenau, HF, J Cinatl, B Morgenstern, G Bauer, W Preiser, and HW Doerr. 2005. "Stability and inactivation of SARS coronavirus." Medical microbiology and immunology 194 (1- 2):1-6.

28. van Doremalen, N., Bushmaker, T., Morris, D., Holbrook, M., Gamble, A., Williamsonet al. 2020. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. medRxiv, 2020.03.09.20033217.

29. van Boheemen, S., M. de Graaf, C. Lauber, T. M. Bestebroer, V. S. Raj, A. M. Zaki, A. D. Osterhaus, B. L. Haagmans, A. E. Gorbalenya,

E. J. Snijder et R. A. Fouchier. 2012. "Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans." mBio 3 (6).

30. Wacharapluesadee S, Duengkae P, Rodpan A, Kaewpom T, Maneeorn P, Kanchanasaka B, et al. 2015. Diversity of coronavirus in bats from Eastern Thailand. Virol J. Apr 11;12:57

31. Wan, Yushun, Jian Shang, Rachel Graham, Ralph S Baric et Fang Li. 2020. "Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS." Journal of Virology.

32. Woo, P. C., S. K. Lau, C. M. Chu, K. H. Chan, H. W. Tsoi, Y. Huang, B. H. Wong, R. W. Poon,

33. J. J. Cai, W. K. Luk, L. L. Poon, S. S. Wong, Y. Guan, J. S. Peiris et K. Y. Yuen. 2005. "Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia." J Virol 79 (2):884-95.

34. Woo, P. C., S. K. Lau, K. S. Li, R. W. Poon, B. H. Wong, H. W. Tsoi, B. C. Yip, Y. Huang, K. H. Chan et K. Y. Yuen. 2006. "Molecular diversity of coronaviruses in bats." Virology 351 (1):180-7.

35. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. 2012. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. Apr;86(7):3995-4008

36. Wu, Z., L. Yang, X. Ren, J. Zhang, F. Yang, S. Zhang et Q. Jin. 2016. "ORF8-Related Genetic Evidence for Chinese Horseshoe Bats as the Source of Human Severe Acute Respiratory Syndrome Coronavirus." J Infect Dis 213 (4):579-83.

37. Zaki, A. M., S. van Boheemen, T. M. Bestebroer, A. D. Osterhaus et R. A. Fouchier. 2012. "Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia." N Engl J Med 367 (19):1814-20.

38. Zhang, Yong, Cao Chen, Shuangli Zhu, Chang Shu, DonFgyan Wang, Jing dong  Song ,  Yang  Song ,  Wei Zhen, Zijian Feng, Guizhen Wu ,  Jun  Xu  et  Wenbo  Xu. 2020. "Isolation of 2019 nCoV  from  a  Stool  Specimen  of  a  Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19)." 2 (8):123-124.

39. Zhou, Peng, Xing-Lou Yang, Xian-Guang  Wang ,  Ben  Hu ,  Lei  Zhang , Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li et Chao-Lin Huang. 2020. "A pneumonia  outbreak associated with a new coronavirus of probable bat origin." Nature:1-4.


来源:European Association of Zoo and Wildlife Veterinarians - Transmissible Diseases Handbook (last updated 17March 2020)

翻译:孙垒

排版:晶晶




关注LABOKLIN实验室

获得专业、精确的

实验室检验信息


关注纳博学堂,

获得最IN的

兽医临床诊疗资讯


 

  德国总部:

地址:Steubenstr. 4  
D-97688 Bad Kissingen
上海:
上海市黄浦区西藏南路1745号

北京:

北京市海淀区天秀路10号中国农大国际创业园3号楼3025

广州:

广州市越秀区东华东路353号(锦桦荟)201


 

德国电话与传真
Tel.: +49 ( 0) 971 - 72020
Fax: +49 (0) 971 - 68546
上海:021-52421578
北京:156-5261-2321

广州:185-2000-2585

 

德国总部:
info@laboklin.de

全国:china@laboklin.com

上海:service@laboklin.cn

北京:beijing@laboklin.cn
广州:
guangzhou@laboklin.cn

 

中国:www.laboklin.cn

德国:www.laboklin.com


你觉得这篇文章怎么样?

30

二维码
维宠宠物导航网 电话:153-2012-0258 电话:155-0222-3953 邮箱:594036387@qq.com 地址:天津滨海新区烟台道15号办公楼5-506室

天津维宠网络科技有限公司 版权所有 © 2019 Inc.

 津ICP备19008835号 技术支持 网站地图